skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomson, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundHandpumps are used by millions of people as their main source of water. Although handpumps represent only a basic form of water provision, there have been continuous efforts to improve the performance of these systems as they are likely to remain in use for many years to come. The introduction of a professional maintenance service in southern Kenya has shown an order of magnitude improvement in operational performance over community-based management, with 90% of handpump faults repaired within 3 days of being reported. One driver behind these efforts is the assumption that a more reliable water supply will lead to a reduction in water-related disease. However, it is not clear if operational improvements lead to health gains. Despite limited empirical evidence, some modeling studies suggest that even short periods of drinking contaminated water can lead to disproportionate negative health impacts. ObjectiveThe aim of this study was to assess whether the improvements in operational performance from the rapid professional maintenance of rural handpumps lead to improved household health outcomes. MethodsFrom a sample of households using handpumps as their primary water source in Kwale County, Kenya, we measured the 2-week prevalence of World Health Organization–defined diarrhea in children, reported by the adult respondent for each household. We compared the rates before and after a period during which the households’ handpumps were being professionally maintained. We then conducted a cross-sectional analysis, fitting logistic regression models with reported diarrhea as the dependent variable and speed of repair as the independent exposure of interest, adjusting for household socioeconomic characteristics; dwelling construction; and Water, Sanitation, and Hygiene (WASH)-related factors. We fitted an additional model to examine select interactions between covariates. ResultsReported diarrhea in children was lower in households whose pumps had been repaired within 24 hours (adjusted odds ratio 0.35, 95% CI 0.24-0.51). This effect was robust to the inclusion of multiple categories of covariates. No reduction was seen in households whose pump repairs took more than 24 hours. Analysis of interaction terms showed that certain interventions associated with improved WASH outcomes were only associated with reductions in diarrhea in conjunction with socioeconomic improvements. ConclusionsOnly pump repairs consistently made within 24 hours of failure led to a reduction in diarrhea in the children of families using handpumps. While the efficacy of reduction in diarrhea is substantial, the operational challenges of guaranteeing same-day repairs limits the effectiveness of even best-in-class pump maintenance. Maintenance regimes that cannot bring handpump downtimes close to zero will struggle to generate health benefits. Other factors that reduce diarrhea prevalence have limited effect in isolation, suggesting that WASH interventions will be more effective when undertaken as part of more holistic poverty-reduction efforts. 
    more » « less
  2. Abstract Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of—and reversing gains made by—this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community‐based water management, small drinking water systems, point‐of‐use treatment, small‐scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance. This article is categorized under:Engineering Water > Water, Health, and SanitationHuman Water > Water GovernanceEngineering Water > Sustainable Engineering of Water 
    more » « less
  3. Abstract Water scholarship has advanced considerably in recent decades. Despite this remarkable progress, water challenges may be growing more quickly than our capacity to solve them. While much progress has been made toward achieving Sustainable Development Goal 6 — water and sanitation for all — new stressors have emerged to threaten this progress. Far from being a problem of the Global South, recent research shows that water insecurity is very much a global phenomenon — and one that has been, until recently, seriously neglected in the Global North. This indicates a strong need for innovative measurement of who experiences water insecurity, new approaches for monitoring the efficacy of water interventions, and more effective management of complex, mobile, and multiple water infrastructures to achieve water security. In this paper, we introduce the Household Water Insecurity approach to addressing these concerns. First, we suggest ways to improve the measurement of water insecurity — pinpointing problems at the household and individual levels — in ways that can inform policymaking with improved precision. Second, we discuss ways that new information and communication technology can improve monitoring and indicate where water infrastructure repairs and investments are most needed. Third, we highlight the need for new approaches to managing complex water infrastructures in more inclusive and democratic ways. 
    more » « less